Exercise 56

Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval.

$$
\sin x=x^{2}-x, \quad(1,2)
$$

Solution

Bring all terms to one side.

$$
\sin x-x^{2}+x=0, \quad(1,2)
$$

Let $f(x)=\sin x-x^{2}+x$. The trigonometric and polynomial functions are each continuous on their respective domains by Theorem 7. The sum or difference of these functions is also continuous by Theorem 4.

$$
f(x)=0, \quad(1,2)
$$

Find a value of x in the interval $[1,2]$ so that $f(x)$ is negative, and find a value of x in the interval $[1,2]$ so that $f(x)$ is positive.

$$
\begin{aligned}
& f(1) \approx 0.841 \\
& f(2) \approx-1.09
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [1,2], and $N=0$ lies between $f(1)$ and $f(2)$. By the Intermediate Value Theorem, then, there exists a number c such that $f(c)=0$.

